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a b s t r a c t

This study evaluates the correlation of some widely used skin permeability predictive models with a
recently proposed empirical model based on human in vivo dermatopharmacokinetic data. Drug fluxes
through the skin have been calculated using in vitro- and in vivo-based models, and observed in vivo
data, and the values compared.

Most in vitro-based models underestimate the in vivo data by 1–100-fold. The discrepancy between
observed data and prediction reaches the maximum (1000–10,000-fold underestimation) for nicotine
(with the smallest molecular weight and log Koct), nitroglycerin (with the largest number of hydrogen
athematical model
n vitro–in vivo correlation
SPR
uman

bond acceptor groups), and for oxybutynin (with the largest molecular weight and log Koct) where there
was a 1000-fold flux overestimation. However, most models correlated well with the in vivo data and the
in vivo-based model (p < 0.05).

The vehicle effect and using non-steady state in vivo data in the flux calculations partly account for the
observed discrepancies between predicted and observed values. Nevertheless, these results reveal the
need for further refinement of skin permeability predictive equations, using the steady state in vivo data,

ulati
and consideration of form

. Introduction

The evaluation of percutaneous absorption of molecules is a
ecessity for optimizing the delivery of chemicals of pharmaceu-
ical and cosmetic concern, for toxicology and risk assessment of
hese materials and for estimating occupational exposure and sim-
lar hazards.

Permeation of drug molecules across the skin occurs by pas-
ive diffusion according to the activity gradient. The outer skin
ayer, stratum corneum, forms a rate-controlling barrier for diffu-
ion of most compounds. The predominant diffusional path for a
olecule crossing the stratum corneum appears to be intercellu-

ar (Barry, 1983; Walters, 2002; Hadgraft and Guy, 2002). However

his path is not exclusive. It is likely that most molecules will pass
hrough the stratum corneum by a combination of intercellular
ipid domains, transcellular route and via the appendages (shunt
outes) (Williams, 2003). It is difficult to assess the skin permeabil-
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ity of materials, particularly new molecules or novel formulations,
using in vivo experiments alone. Consequently, in vitro models
are commonly used for percutaneous absorption evaluations. Nev-
ertheless, there has been a reluctance to accept in vitro dermal
penetration data due to the limited number of parallel in vitro
and in vivo absorption studies in humans or animals, which can
be used to confirm the comparability of data. Predictive math-
ematical models have been developed to statistically relate the
experimentally determined percutaneous penetration of a range
of exogenous chemicals to known physicochemical parameters
(Hadgraft and Guy, 2002; Vecchia and Bunge, 2002; Moss et al.,
2002; Yamashita et al., 1994). The rationale for using these mod-
els is to choose drugs with more favorable partition and diffusion
characteristics which improves the chance of targeted dermal deliv-
ery and increased bioavailability. Besides, there are compounds like
pesticides, the absorption of which in significant amounts is clearly
undesirable. An appropriate mathematical model would allow a
reliable risk assessment before conducting in vivo evaluations.
Validated mathematical models can be considered as economic
alternatives for the assessment of skin permeation, and their use
has been recommended before in vitro and in vivo experiments

are conducted (Hadgraft and Guy, 2002). However, these mod-
els are still being critiqued for their uncertainity due to (1) the
limitations of the models in terms of statistical fit, (2) their fail-
ure under severe non-linear conditions and (3) the inability to
extrapolate their conclusions to other systems, particularly when

http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:farahmand.s@gmail.com
mailto:Maibachh@derm.ucsf.edu
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Table 1
Permeability coefficient correlations based on log Koct and MWa.

Model
no.

Equation source Chemical classb Permeability correlation (Kp in cm/h) Data range

1 Abraham et al. (1995) Misc (n = 43) log Kp = −2.184 + 0.851 log Koct − 0.012 MW NSc

2 Vecchia and Bunge (2002) Misc (n = 170) log Kp = −2.44 + 0.514 log Koct − 0.0050 MW 18 < MW < 585; −3.1 < log Koct < 4.6
3 Bronaugh and Barton

(1991)
Flynn database (n = 90) log Kp = −2.61 + 0.67 log Koct − 0.0061 MW 18 < MW < 765; −3 < log Koct < 5.5

4 Cleek and Bunge (1993) Flynn database (n = 90) log Kp = −2.8 + 0.74 log Koct − 0.006 MW 18 < MW < 765; −3 < log Koct < 6
5 Flynn and Amidon (Vecchia

and Bunge, 2002)
Flynn database (n = 90) log Kp = −1.44 + 0.79 log Koct − 1.45 log MW 18 < MW < 765; −3 < log Koct < 6

6 Kasting et al. (1992) Flynn database (n = 90) Kp = [(1/Plip + Ppol) + (1/Paq)]; log Plip = −2.87 + log Koct − 0.0078 MW;

Ppol = 1 × 10−5
√

300/MW; Paq = 0.15
√

300/MW

18 < MW < 518; −1.4 < log Koct < 6.3

7 Potts and Guy (1992) Flynn database (n = 90) log Kp = −2.72 + 0.71 log Koct − 0.0061 MW 18 < MW < 765; −3 < log Koct < 6
8 Wilschut et al. (1995) Wilschut database (n = 123) log Kp = log(0.00284 + 0.000256 log Koct)−0.00591 MW 18 < MW < 765; −3 < log Koct < 6
9 Wilschut et al. (1995) Wilschut database (n = 123) log Kp = −1.55 + 0.481 log Koct − 0.143 MW 18 < MW < 765; −3 < log Koct < 6

10 Lien and Gao (1995) Flynn database (n = 22) log Kp = 0.84 log Koct − 0.07(log Koct)2 − 0.27 Hb − 1.84 log MW + 4.39 18 < MW < 365; −1.4 < log Koct < 4
11 Vecchia and Bunge (2002) Flynn database (n = 84) log Kp = −2.76 + 0.52 log Koct − 0.0041 MW 18 < MW < 765; −3 < log Koct < 6
12 Vecchia and Bunge (2002) Flynn database (n = 84) log Kp = −2.72 + 0.53 log Koct − 1.32 (MW/Td) 18 < MW < 765; −3 < log Koct < 6

a Molecular weight and logarithmically transformed octanol–water partition coefficient.
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b n = total number of data points; the total number of different chemicals may be
c Not specified.
d Temperature (K) was considered 300 (32 ◦C) in our study.

ehicle effects have to be taken into account (Guy and Hadgraft,
985).

Prediction of the in vivo blood concentration has become
ncreasingly important in the development of transdermal thera-
eutic systems. Several reports attempt to mathematically correlate
r predict the in vivo drug levels from in vitro permeation data
ased on a diffusion model (Yamashita et al., 1994; Guy and
adgraft, 1985; Ainbinder and Touitou, 2005) or a convolution

echnique (Sato et al., 1988). Recently, we evaluated the sta-
istical correlation of maximal plasma concentration (Cmax) of
rugs administered via transdermal delivery systems with their
hysicochemical properties. Multivariate regression analysis was
sed to analyze the relationship between Cmax and molecular
eight, hydrogen bonding, and octanol–water partition coefficient

Farahmand and Maibach, 2009).
An empirical model was proposed:

max(ng/ml) = 8.625E − 7 × HA + 8.231E − 7 × log Koct − 1.22E

− 6 × HD − 2.58E − 6 N = 10, r = 0.974,

F = 37.45, SD = 0.82, p < 0.001 (1)

here, Cmax is the mean reported value for a given drug, nor-
alized to dose. HA and HD are the total number of hydrogen

ond acceptor and donor groups on the molecule, respectively;
og Koct is the logarithmically transformed octanol–water partition
oefficient.

The present study compares the predictability and explores the
orrelation of our adopted model (in vivo-based model) and some
idely used empirical models which were based on in vitro epider-
al permeability coefficient data (in vitro-based models).

. Materials and methods

12 various in vitro-based models and our developed in
ivo-based equation were utilized to estimate the fluxes of 10 dif-
erent transdermally administered drugs (including: scopolamine,

lonidine, testosterone, estradiol, norelgestromine, rivastigmine,
ethyl phenidate, selegiline, nitroglycerin, nicotine). Calculated

uxes were then compared between models as representatives
f models predictability. In order to calculate the fluxes, three
ifferent approaches were considered based on the following
ategories:
.

2.1. In vitro-based predictive models

12 mathematical models (permeability coefficient correlations
based on logarithmically transformed Koct (log Koct) and molecular
weight (MW), were considered. Model numbers, equations, and ref-
erences are shown in Table 1. Most models were developed through
analysis of Flynn database where in vitro human skin permeabil-
ities of 97 drugs from aqueous solutions are listed (Flynn, 1990),
models 8 and 9 were developed through analysis of a more exten-
sive database (Wilschut) and models 1 and 2 were based on the
miscellaneous data taken from different resources.

Using MW and log Koct data (Budavari, 1989; Hansch et al., 1995),
the permeability coefficient (Kp) of each drug was calculated using
all the predictive equations. (In case of various brands for a drug,
permeability coefficient was calculated for the selected brands.) As
the Flynn database concerns percutaneous transport from aqueous
solution, the maximum achievable flux (J) was estimated by multi-
plying permeability coefficient (Kp) by the aqueous solubility (Sw):

J = Kp × Sw (2)

2.2. In vivo-based predictive model

We assumed:

Cmax = A × J

CL
(3)

Where, A is the surface area of the patch (cm2), J is the flux
(ng/cm2 h), and CL is the transdermal clearance (CL = CLtotal (total
body clearance)/F (absolute bioavailability)) (ml/h) (Hadgraft and
Guy, 2002). Flux was estimated in two steps: first, CL was calculated
using labeled delivery rate of transdermal systems for the above
mentioned drugs (A × J), and corresponding Cmax values reported
for them. The Cmax values were obtained form a pharmacokinetic
database (Farahmand and Maibach, 2009). The second step was to
calculate the flux based on Cmax values predicted by our developed
in vivo-based model and the calculated CL (ml/h) in the first step
described above. Afterwards, Cmax was estimated using Eq. (1):

Cmax(ng/ml) = 8.625E − 7 × HA + 8.231E − 7 × log Koct − 1.22E
− 6 × HD − 2.58E − 6

Flux (ng/cm2 h) was then calculated having surface area of the
patch, calculated clearance, and predicted Cmax, by applying Eq. (3).



S. Farahmand, H.I. Maibach / International Journal of Pharmaceutics 375 (2009) 41–47 43

Table 2
Parameters used for flux calculations.

Drug Active ingredient MWa,b log Koct
c ,d HAe,f HDf,g Expected A·J (delivery

rate)h (ng/h)
CLi

transdermal (ml/h) Aj (cm2) SW
k (ng/ml) Observed Cmax

m

(ng/ml)

TD Scop Scopolamine 303.35 1.24 5 1 5.00E+03 5.00E+04 2.5 2.50E+06 1.00E−01
Oxytrol Oxybutynin 357 4.3 4 1 1.63E+05 4.28E+04 39 3.90E+07 3.80E+00
Androderm Testosteone 288.42 3.32 2 1 1.04E+05 1.98E+04 37 3.70E+07l 5.25E+00
Exelon Rivastigmine 250.34 1.98 3 0 3.96E+05 5.82E+04 10 1.00E+07 6.80E+00
Orthoevra-evra Norelgestromin 327.46 4 3 2 6.25E+03 6.17E+03 20 8.80E+03l 1.01E+00
Daytrana Methylphenidate 233.31 3.65 3 1 3.33E+06 7.17E+04 37.5 3.75E+07 4.65E+01
EMSAM Selegiline 187.3 2.7 1 0 2.50E+05 1.40E+05 20 2.00E+07 1.79E+00
Estraderm Estradiol 272.39 4.01 2 2 2.08E+03 4.58E+04 18 3.60E+03l 4.55E−02
Estradot Estradiol 272.39 4.01 2 2 4.17E+03 4.12E+04 10 3.60E+03 1.01E−01
Menorest Estradiol 272.39 4.01 2 2 4.17E+03 3.60E+04 29 3.60E+03 1.02E−01
Menostar Estradiol 272.39 4.01 2 2 5.83E+02 2.83E+04 3.25 3.60E+03 2.06E−02
Oesclim Estradiol 272.39 4.01 2 2 4.17E+03 3.57E+04 44 3.60E+03 1.17E−01
Tradelia Estradiol 272.39 4.01 2 2 2.08E+03 4.34E+04 18 3.60E+03 4.80E−02
Habitrol Nicotine 162.23 1.17 2 0 8.75E+05 4.17E+04 30 3.60E+03 21
Nicotine-alza Nicotine 162.23 1.17 2 0 8.75E+05 4.00E+04 12 3.60E+03 2.19E+01
Nitroderm Nitroglycerin 227.11 1.62 9 0 4.00E+05 4.00E+06 20 2.00E+07 1.02E−01
Nitro-Dur Nitroglycerin 227.11 1.62 9 0 4.00E+05 1.04E+06 20 2.00E+07 1.00E−01
Nitro-Dur-2 Nitroglycerin 227.11 1.62 9 0 4.00E+05 8.58E+05 20 2.00E+07 4.66E−01

a Molecular weight.
b Data obtained from Budavari (1989).
c Logarithmically transformed octanol–water partition coefficient.
d Data is taken from Hansch et al. (1995).
e Number of hydrogen bond acceptor groups on the molecule.
f Data compiled from PubChem (2008).
g Number of hydrogen bond donor groups on the molecule.
h Labeled delivery rates are cited data of PDR (2006).
i Transdermal clearance was calculated using labeled delivery rate of transdermal systems and corresponding Cmax values reported for them.

2

v
t

2

1
e
n
p
S

3

v
a
c
(
s
1
v

t
t
l
d

r
m

j Patch surface areas obtained from PDR (2006).
k Water solubility data are mainly taken from Budavari (1989).
l Reported by Miura et al. (2006).

m Data obtained from (Farahmand and Maibach, 2009).

.3. Observed in vivo data

Observed Cmax values, surface areas and calculated clearance
alues were used as described earlier by utilizing Eq. (3), to estimate
he flux (J) for the observed in vivo data.

Calculations were performed with Microsoft Excel 2003.

.4. Statistical analysis

Statistical analysis was performed using SPSS software (SPSS
1.5, SPSS Science, Chicago, IL, USA). Normality of distributions was
valuated using Kolmogrov–Smirnov test of normality, and for non-
ormal distributions, Spearman rank order correlation analysis was
erformed to evaluate the correlation of in vitro and in vivo models.
ignificance level was set at 0.05.

. Results

Tables 2–4 present the parameters used for flux calculation, flux
alues predicted by different models and correlations of in vitro
nd in vivo models predictions, respectively. Fig. 1 compares fluxes
alculated for the in vivo observed data (Jexp), with predictions
Jpred) from the in vivo- and in vitro-based mathematical models. As
hown in Table 4, all the in vitro-based models except one (model
0) show significant correlations with the observed data and the in
ivo-based model (p < 0.05).

The grid lines in Fig. 1 distinguish those permeability coefficients
hat are underestimated or overestimated by 10-fold or more. For
he in vivo model, the data is distributed around Jexp/Jpred = 1 (i.e.,

og Jexp/Jpred = 0) with the exception of norelgestromin with 40-fold
iscrepancy between data and prediction.

For the in vitro models, the data is mainly distributed in the
ange of 0 < log Jexp/Jpred < 2, which means most models underesti-
ate the data 10-fold but sometimes up to 100-fold. For selegiline
the flux is overestimated by 10–100-fold by different models. The
discrepancy between data and the prediction reaches the maximum
(1000–10,000-fold underestimation) for nicotine (with the small-
est molecular weight and log Koct), nitroglycerin (with the largest
number of hydrogen bond acceptor groups), and for oxybutynin
(with the largest molecular weight and log Koct) where the flux was
overestimated by around 1000-fold.

4. Discussion

Development of QSPRs (Quantitative Structure Permeability
Relationship) has been an issue of interest among skin research
scientists in the last 30 years. The potential advantages of apply-
ing an appropriate model are great, particularly for the prediction
of in vitro percutaneous absorption and formulation development
and optimization. However, there are limitations attributed to the
models. Many models are produced from data which have been
compiled from different sources and laboratories. Although model
development was greatly facilitated by using Flynn database, which
is based on in vitro human skin permeability data, this data is a com-
pilation from 15 literature sources (Moss et al., 2002). It is inevitable
that this data contains a high degree of experimental variation, due
to inter-laboratory variability, and variability due to the use of skin
from different sources and sites on the body, etc. However, it has
been commented that the scale of variance observed is within the
expected range of variability in skin delivery experiments, and it has
been accepted that most of the equations can adequately predict
the available skin permeability coefficient of chemicals (Vecchia
and Bunge, 2002; Moss et al., 2002).
In our study, we extended the QSPR models beyond their in
vitro boundary by the use of a clinical end point such as Cmax.
Previously we showed that with the exception of fentanyl and
clonidine as outliers, the developed in vivo-based model predicted
the Cmax form the log Koct, HA, and HD for drugs administered
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Table 3
Predicted fluxes (ng/cm2 h) by different models.

Drug Active ingredient Observed in vivo In vivo model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

TD Scop Scopolamine 1.94E+03 2.13E+03 1.13E+02 3.17E+03 1.55E+03 1.31E+03 5.77E+02 7.32E+02
Oxytrol Oxybutynin 3.98E+03 3.41E+03 3.11E+05 1.93E+06 2.48E+06 3.09E+06 3.60E+06 6.69E+06
Androderm Testosteone 2.20E+03 1.76E+E+03 6.06E+01 2.67E+02 2.86E+02 3.20E+02 1.65E+02 5.75E+02
Exelon Rivastigmine 5.25E+04 5.72E+04 9.05E+04 1.06E+05 7.74E+04 7.22E+04 2.21E+04 7.17E+04
Orthoevra-evra Norelgestromin 1.30E+02 5.69E+03 1.72E+01 8.38E+01 1.04E+02 1.24E+02 1.04E+02 2.63E+02
Daytrana Methylphenidate 9.58E+04 1.03E+05 1.33E+03 1.86E+03 2.58E+03 2.67E+03 1.02E+03 5.94E+03
EMSAM Selegiline 1.25E+04 2.12E+04 3.67E+05 5.13E+05 5.69E+05 5.58E+05 1.25E+05 1.04E+06
Estraderm Estradiol 5.51E+01 1.79E+02 3.28E+01 6.54E+01 9.36E+01 1.01E+02 5.67E+01 2.25E+02
Estradot Estradiol 4.12E+02 6.63E+02 3.28E+01 6.54E+01 9.36E+01 1.01E+02 5.67E+01 2.25E+02
Menorest Estradiol 1.59E+02 2.28E+02 3.28E+01 6.54E+01 9.36E+01 1.01E+02 5.67E+01 2.25E+02
Menostar Estradiol 1.79E+02 9.81E+01 3.28E+01 6.54E+01 9.36E+01 1.01E+02 5.67E+01 2.25E+02
Oesclim Estradiol 7.58E+02 1.825E+03 3.28E+01 6.54E+01 9.36E+01 1.01E+02 5.67E+01 2.25E+02
Tradelia Estradiol 1.16E+02 1.70E+02 3.28E+01 6.54E+01 9.36E+01 1.01E+02 5.67E+01 2.25E+02
Habitrol Nicotine 2.92E+04 3.15E+04 2.63E+00 8.06E+00 5.50E+00 4.43E+00 6.90E-01 3.93E+00
Nicotine-alza Nicotine 7.27E+03 7.55E+03 2.63E+00 8.06E+00 5.50E+00 4.43E+00 6.90E-01 3.93E+00
Nitroderm Nitroglycerin 4.00E+04 4.26E+04 3.68E+02 2.26E+03 1.54E+03 1.35E+03 3.31E+02 1.20E+03
Nitro-Dur Nitroglycerin 2.00E+04 2.17E+04 3.68E+02 2.26E+03 1.54E+03 1.35E+03 3.31E+02 1.20E+03
Nitro-Dur-2 Nitroglycerin 1.55E+04 1.466E+04 3.68E+02 2.26E+03 1.54E+03 1.35E+03 3.31E+02 1.20E+03

Drug Active ingredient Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

TD Scop Scopolamine 1.35E+03 7.76E+02 2.38E+03 9.07E+01 2.89E+03 1.67E-01
Oxytrol Oxybutynin 2.86E+06 7.94E+06 1.31E+06 9.16E+08 2.06E+06 9.49E+01
Androderm Testosteone 3.02E+02 4.25E+02 1.66E+02 4.71E+05 2.43E+02 4.86E+00
Exelon Rivastigmine 7.21E+04 4.52E+04 6.90E+04 1.80E+08 8.75E+04 6.78E+01
Orthoevra-evra Norelgestromin 1.17E+02 2.62E+02 5.38E+01 3.95E+04 8.35E+01 3.77E+00
Daytrana Methylphenidate 2.81E+03 4.79E+03 1.05E+03 1.22E+06 1.52E+03 1.65E+02
EMSAM Selegiline 5.67E+05 5.13E+05 3.09E+05 2.48E+09 3.76E+05 1.65E+02
Estraderm Estradiol 1.05E+02 2.32E+02 3.76E+01 4.25E+04 5.82E+01 1.65E+02
Estradot Estradiol 1.05E+02 2.32E+02 3.76E+01 4.25E+04 5.82E+01 1.65E+02
Menorest Estradiol 1.05E+02 2.32E+02 3.76E+01 4.25E+04 5.82E+01 1.65E+02
Menostar Estradiol 1.05E+02 2.32E+02 3.76E+01 4.25E+04 5.82E+01 1.65E+02
Oesclim Estradiol 1.05E+02 2.32E+02 3.76E+01 4.25E+04 5.82E+01 1.65E+02
Tradelia Estradiol 1.05E+02 2.32E+02 3.76E+01 4.25E+04 5.82E+01 1.65E+02
Habitrol Nicotine 4.76E+00 2.62E+00 5.59E+00 1.69E+04 2.64E+00 5.91E-02
Nicotine-alza Nicotine 4.76E+00 2.62E+00 5.59E+00 1.69E+04 2.64E+00 5.91E-02
N +02
N +02
N +02
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itroderm Nitroglycerin 1.39E+03 7.68E
itro-Dur Nitroglycerin 1.39E+03 7.68E
itro-Dur-2 Nitroglycerin 1.39E+03 7.68E

hrough transdermal patches (Farahmand and Maibach, 2009). A
ossible explanation for the divergence observed with fentanyl and
lonidine could be formation of skin reservoirs which had been
eported for these drugs (MacGregor et al., 1985; Grond et al., 2000).
espite the small number of drugs analyzed in our model, and

he need for a comprehensive explanation of the model in parallel

ith mechanistic approaches, development of this model begins

he challenge of developing empirical models for skin absorption
sing clinical endpoints and validating the in vitro-based predictive
quations.

able 4
orrelation of models with observed in vivo data, and the in vivo modela.

odel no. Correlation with Observed
in vivo data

Correlation with in vivo
model

Spearman rank
correlation coefficient

p-Value Spearman rank
correlation coefficient

p-Value

1 0.686 0.002 0.57 0.013
2 0.581 0.012 0.57 0.012
3 0.628 0.006 0.626 0.006
4 0.668 0.003 0.663 0.004
5 0.628 0.006 0.626 0.006
6 0.651 0.004 0.651 0.004
7 0.644 0.005 0.636 0.005
8 0.593 0.010 0.593 0.01
9 0.581 0.023 0.593 0.01

10 0.293 0.289 0.1 0.48
11 0.596 0.009 0.586 0.01
12 0.593 0.013 0.58 0.015

a n (total number of data points) = 18.
1.48E+03 7.92E+04 2.64E+00 5.91E-02
1.48E+03 7.92E+04 2.64E+00 5.91E-02
1.48E+03 7.92E+04 2.64E+00 5.91E-02

The present results show that fluxes predicted by all of the mod-
els except one, are correlated with the fluxes calculated through
observed in vivo data, and in vivo model. The exception is the model
developed by Lien and Gao (model 10), which considered a biphasic
effect of log Koct on skin permeation, and a negative correlation with
the number of hydrogen bonds that can be formed by a compound.
The largest correlation coefficients were observed with models 1, 4,
6, and 7. A major difference of model 1 (developed by Abraham et
al.) with other studied models, is the consideration of a large partial
effect for log Koct (coefficient of log Koct as predictor is 0.851), which
is combined with a large negative coefficient for MW. On the other
hand, the Potts and Guy and the Kasting et al. correlations (models
7 and 6) were developed assuming a theoretically expected expo-
nential dependency on molecular size as represented by MW (5).
Vecchia and Bunge (2002) developed models 11 and 12, by rean-
alyzing the Flynn database using log Koct values recommended by
Hansch et al. instead of Flynn’s tabulated values (model 11), and
incorporating the temperature of the permeability coefficient mea-
surement into analysis (model 12). Although their modifications
have been reported to reduce the regression uncertainty and vari-
ance and improve the predictability of the in vitro-based models,
fluxes predicted by these models, do not show a stronger correlation
with the fluxes calculated from observed in vivo data as compared
with other models.
As presented in Fig. 1, for the in vitro models, log Jexp/Jpred is
mainly distributed in the range of 0–2, which implies most of the
models underestimate the flux up to 100-fold or two orders of
magnitude. This is more obvious for the drugs with the molec-
ular weights in the range of 200–350 g/mol, and 1.5 < log Koct < 4.
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Fig. 1. Comparison of different models predictive power according to the observed
in vivo data; correlations with physicochemical parameters (a) molecular weight, (b)
logarithmically transformed octanol–water partition coefficient, and (c) number of
hydrogen bond acceptor groups on the molecule. Most in vitro-based models under-
estimate the in vivo data by 1–100-fold. The discrepancy between observed data and
prediction reaches the maximum (1000–10,000-fold underestimation) for nicotine
(with the smallest molecular weight and log Koct), nitroglycerin (with the largest
number of hydrogen bond acceptor groups), and for oxybutynin (with the largest
molecular weight and log Koct) where there was a 1000-fold flux overestimation.
nal of Pharmaceutics 375 (2009) 41–47 45

Some earlier studies in which human skin was used in vitro to pre-
dict absorption in vivo in human volunteers or primates, support
this observation as they reported lower absorption in vitro than
in vivo (Bronaugh and Maibach, 1985; Bronaugh and Franz, 1986;
Guy et al., 1986). Underestimation of in vivo absorption by in vitro
models has often been explained by the fact that lipophilic com-
pounds are not sufficiently soluble in the receptor fluid used, thus
absorption of these compounds is limited in the in vitro system.
The lower solubility of lipophilic chemicals in aqueous receptor flu-
ids can result in the development of a reservoir of test compound
in the skin or in the stratum corneum in vitro which may not be
formed in comparable in vivo studies (Wilkinson and Williams,
2005). It has been suggested that the receptor fluid and thick-
ness of the skin section used in in vitro studies are critical for
certain compounds if absorption in vivo is not to be underesti-
mated in vitro (Wilkinson and Williams, 2005). These facts should
be considered when analyzing the Flynn database, or any other
in vitro skin permeability coefficient database, where the coef-
ficients could have been measured under different experimental
conditions.

Selegiline is the only drug in the range of −2 < log Jexp/Jpred < 2
for which the flux is overpredicted by the in vitro-based equations.
It has the smallest number of hydrogen acceptor groups among the
studied molecules, which according to the in vivo-based model will
result in lower Cmax values. This is further supported by the fact that
the flux is underestimated by two of the models (models 11 and
12) for nitroglycerin with the highest number of hydrogen bonding
acceptor groups. Moreover, as the only evaluated model consider-
ing the effect of hydrogen bonding, model 10 highly overestimates
selegiline flux, as it assumes a negative correlation between total
number of hydrogen bonds and skin absorption (see Tables 1 and 2).
Further mechanistic evaluations are needed to elucidate the influ-
ence of this molecular feature on blood concentration of drugs after
transdermal administration.

Analyzing in vitro-based predictive models, Vecchia and Bunge
(2002) suggested that the distinctive differences between equa-
tions are in their prediction effect of MW. They observed that
nearly all of their studied equations reasonably predict the exper-
imental data for chemicals of MW ∼100 with some exceptions,
and differences between model equations and between equations
and experimental values increase with the MW of the penetrating
chemical. This may explain the flux overestimation observed for
the oxybutynin, with the highest molecular weight in the studied
data set. Besides, it might be concluded that because of its high
lipophilicity, the main route for its transdermal absorption, is dif-
fusion through the intercellular pathway, as the highest degree of
flux overestimation is made by model 6, which also considers a
polar pathway for drug transport. Nevertheless, flux for the smallest
molecule with a low log Koct, nicotine, has been largely underesti-
mated by most in vitro-based equations.

Despite all the observed discrepancies, all the models except one
(model 10) show good correlations with the observed data and the
in vivo model. Several parameters may be involved in the devia-
tion of in vitro and in vivo-based predictions. Our calculations are
based on Cmax instead of Css, since we assumed transdermal deliv-
ery systems provide steady blood concentrations over time and the
difference between Cmax and Css can be ignored. However, the orig-
inal form of Eq. (3) assumes the steady state condition, where the
drug input rate from its transdermal system is expected to be equal
to its output rate, determined by total body clearance multiplied by
the therapeutic plasma concentration. The variances between pre-

dicted and observed data might be less if Cmax could be replaced
by Css, which was unavailable for most of the drugs. The variability
of the reported data for water solubility and partition coefficient
in different resources, particularly for the drugs with low water
solubilities, may also cause variations from the real predicted flux
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alues, since water solubilities are used for calculation of flux for in
itro-based models.

One important cause of variations between studied in vitro-
ased predictive models and the in vivo-based model, or observed
ata is the formulation effect. The development of more appropri-
te models for skin delivery will be required to focus on the effect
f formulation type. Permeabilities from aqueous solutions alone
re considered for the in vitro models derived form Flynn database.
owever, the observed data and in vivo model are based on the
lasma concentration values reported for transdermal patches.
kin patches can be designed with hydrophilic or hydrophobic
atrixes, which provide different drug release rates (Williams,

003). Moreover, presence of small solvent molecules such as
thanol or propylene glycol, and/or occlusive backing layers will
hange the partitioning of the drug between the delivery device and
he skin (Hadgraft and Guy, 2002). Advanced technologies such as
OT matrix – where the drug is blended into microscopic pockets
niformly dispersed throughout the patch’s drug/adhesive layer –
e.g. Estradot and Daytrana) will also affect the flux and the blood
oncentration of drugs.

Riviere and Brooks (2005, 2007) presented an approach using
ybrid QSPR relationships where absorption through porcine skin

n flow-through diffusion cells is predicted by individual pen-
trants, coupled with a mixture factor (MF) that accounts for
hysicochemical properties of vehicle/mixture components. They
howed that the use of the MF in combination with a classic QSPR
odel based on penetrant properties significantly improved the

bility to predict dermal absorption of compounds dosed in com-
lex chemical mixtures. Similar studies are needed using human
kin to improve the predictability of currently used in vitro-based
odels.
Another limitation concerning the developed in vivo-based

odel is that the in vivo data is obtained from studies using dif-
erent pharmacokinetic study design, sample size, and analytical
echniques with different accuracies and precisions. Hence, same
uxes from in vitro and in vivo-based predictive models cannot
e expected. Along with skin–blood transport of the molecule and
he kinetic parameters affecting the blood concentration (such as
rotein binding and elimination), it can be concluded that the
rug–vehicle interactions and physiochemical aspects of release are
lso reflected in the in vivo-based model.

Finally, complexity of physicochemical and physiological con-
itions of transdermal absorption and numerous other biological,
hysical and chemical factors may explain our findings.

Despite all the limitations, this is a step in developing empiri-
al predictive models for transdermal drug delivery using clinical
ndpoints. Further studies, with the emphasis on dermatophar-
acokinetic parameters such as AUC or Css, with consideration of

he formulation effect, are needed to support these results. Valida-
ion and standardization of existing permeability coefficient data
an help in making more appropriate estimations for human skin
ermeability. Validation of predictive models using the parallel
bserved in vitro and in vivo data will be useful in feasibility assess-
ent in topical and transdermal delivery, before development of

ew transdermal drugs and/or vehicles.

. Conclusion

Passive diffusion of a solute from its vehicle into the skin is
etermined by the unique molecular and physical properties of the

iffusant, the vehicle, and the skin. The properties of these com-
onents, along with their interactions, largely determine chemical
enetration. Effects of physicochemical factors on percutaneous
enetration may extend beyond the permeation process (which

nvolves drug–skin, vehicle–skin, and drug–vehicle interactions).
nal of Pharmaceutics 375 (2009) 41–47

Associations are probably more complex than simple linear numer-
ical relationships.

This study compared the predictability of different in vitro-
based mathematical models of skin permeation with the recently
proposed in vivo-based model. Most in vitro models correlated well
with the in vivo model and observed data; however, there are 0–4
orders of magnitude discrepancies observed in the expected and
predicted values, which can be attributed to the end point differ-
ences and the vehicle effects. Further studies with the emphasis on
dermatopharmacokinetic parameters such as AUC or Css, with con-
sideration of the formulation effect, are needed to support these
findings.

The practical implications of our observations for drug develop-
ment and toxicology appear clear, and offer stimulus for refinement
of our experimental data and mathematical interpretation.
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